

National Academy of Sciences of Ukraine National Science Center "Kharkiv Institute of Physics and Technology" V.N. Karazin Kharkiv National University

Lecture #1: Introduction in Nuclear Reactor Physics

Sergii P. Fomin

Leading researcher, PhD, Akhiezer Institute for Theoretical Physics National Science Center "Kharkiv Institute of Physics and Technology"

e-mail: spfomin@gmail.com

Kutaisi International University 01-03 November 2024 Kutaisi, Georgia

Outlook:

- Human Civilization & Power Consumption
- Fundamental differences between different types of "Energy sources"
- Basic principles of operation of a nuclear reactor
- Nuclear power in the world
- Main problems of nuclear power
- And ways to solve these problems
- Opened and closed nuclear fuel circles

Civilization & Power Consumption

First cave-fire ~ 500 000 years ago : "Chinese Prometheus" Metallurgy: Copper (5 ky BC) \rightarrow Bronze (3 ky BC) \rightarrow Iron (1 ky BC)

From the book: Ian Hore Lacy, "Nuclear Energy in the 21st Century", Elsevier Publ., 2006.

Dynamics of the global consumption of energy resources

CURRENT L	JSE	2012	2016 (IE	4)
<u>Source</u>	EJ/y	%	%	
Oil	170	33.20	31,9	
Coal	139	27.15	27.1	
Gas	109	21.30	22.1	
Biomass	51	9.96	9.8	
Uranium	30	5.86	5.0	
Hydro	12	2.34	2.5	
Wind	0.72	2 0.14	0.83	x
Other renew	0.23	3 0.045	0.48	X
<u>Solar</u>	0.04	4 0.007	0.29	x 4
Total:	512	100%	100%	X 4
Fossil	448	87.5	86.1	
Renewable	64	12.5	13.9	

1EJ (ExaJ) = 10¹⁸J = 2.78·10¹¹ kW·h

J. Mercure, "Energy", 46 (2012) 322.

- 6 !!
- 40 !!

4

2018 BP Energy Outlook © BP p.I.c. 2018

Global electricity production by types fuel 2016 (2023)

Different kinds of "Energy sources"

1) "Mechanical power" is the work by Gravitational field of the Earth

$$\mathbf{F} = \gamma \frac{\mathbf{m} \cdot \mathbf{M}}{\mathbf{r}^2} \qquad \mathbf{F}$$

$$\mathbf{E} = \mathbf{g} \cdot \mathbf{m} \cdot \mathbf{h}$$
$$\mathbf{g} = \gamma \mathbf{M}_3 / \mathbf{R}_3^2$$

To boil 1 liter of water ~ 0.1 kWh

~ 42 700 kg·m - mechanical energy (assuming 100% transform. efficiency!)

2) " Chemical power" (carbon oxidation) has Electromagnetic nature

$$C + O_2 = CO_2$$

$$\mathbf{F} = k \frac{\mathbf{q} \times \mathbf{Q}}{\mathbf{r}^2}$$

 $E \sim 1 \text{ eV/atom} = 1.6 \cdot 10^{-19} \text{ J/atom}$

~ 10 g of gasoline ~ 40 t · m mech. energy - 10⁸ times !!!

Different kinds of "Energy sources" 3) "Nuclear energy" is the binding energy of the nucleons in the $E_N \approx \frac{Ze^2}{R_N}$ nucleus - "Strong interaction" Fission of 1 atomic nuclear of Uranium releases ~ 200 MeV, i.e. 10⁸ times more !!! than at oxidation of 1 carbon atom produced energy: 200MeV/fission mean number of emitted neutrons : $\overline{\nu}^{\approx} 2.5$ neutron fissile nucleus To boil 1 liter of fission product (FP) water ~ 0.1 kWh (fission fragment) is equivalent of fission ~ 10^{16} nuclei of ^{235}U (1cm³ ~ 10^{22} atoms !) ~ 10 g of gasoline ~ 40 t·m mechanical energy 8

Nuclear chain reaction (Leo Szilárd and Enrico Fermi - 1939)

Source of nuclear energy is the mass defect

 $\Delta m = (Z \cdot m(p) + N \cdot m(n)) - M_n(Z, A) \qquad \Delta E = \Delta (m \cdot c^2) = c^2 \cdot \Delta m$

Specific binding energy in the nucleus $\varepsilon = \Delta E / A$ (MeV/nucleon)

NEUTRON CROSS-SECTIONS FOR FISSION OF URANIUM AND PLUTONIUM

Nuclear Power (2019: Total = 450 reactor units)

12

Nuclear Power Today

4 Nuclear Power Plants (13 WWER-1000 and 2 WWER-440) Total Electric Power – 13,835 MWe.

Nuclear Power Problems

- Safety !!! (after Chernobyl accident)
- Closed fuel cycle (fuel reproduction)
- Ecological problems (nuclear waste utilization)
- Nonproliferation of fissile materials (nuclear terrorism)

Nuclear Power 2019

Explored Earth reserves of Uranium

Nuclear plants are provided with Uranium-235 only until 2035!

Burnup and Reproduction of Nuclear Fuel

Forecast of ensuring uranium production until 2050 with explored reserves

Production was provided with uranium reserves until 2035 (!)

Fast Reactors

Fast Reactors

Зависимость числа мгновенных нейтронов η на один акт поглощения от энергии падающих нейтронов

Значения η при усреднении по спектрам тепловых и быстрых нейтронов

Реактор	²³⁹ Pu	²³⁵ U	2°3U
у≈	2,9	2,5	2,5
ЛВР	2,04	2,06	2,26
БН	2,45	2,10	2,31

Neutron balance

 $v_{f5} = 2,42$ – average number of fast fission neutrons

$$1 = \frac{v_{f5} \Sigma_{f5}}{\Sigma_{f5} + \Sigma_8} = \frac{v_{f5}}{1 + \alpha}$$
$$\alpha = \frac{\Sigma_8}{\Sigma_{f5}}$$

Y

$$\eta - (1 + L) \ge 1$$

$$\eta \ge 2 + L \quad => \quad \eta \ge 2$$

 $BR = \eta - (1+L)$ - breeding ratio

Fast Reactors

The main advantages of fast neutron reactors:

- 1) the possibility of reproduction of nuclear fuel (breeding reactors) KR = 1.4
- 2) deep fuel burnout (economy)
- 3) high temperatures of the coolant higher efficiency
- 4) small size (transportability)

Disadvantages of fast neutron reactors:

- 1) higher enrichment of nuclear fuel (4÷5 times)
- 2) higher energy tension (4÷5 times)
- 3) coolant problem (liquid metal: Na, NaK, Hg, Pb, Bi; gas: He)

(TM = 98C, 20C)

4) construction materials

Forecast world demand for Uranium up to 2100

Opened and closed nuclear fuel circles

5

Thank you for attention ! & Time for questions!

Poisoning of the reactor with fission products

Рис. 19.2. Схема образования и убыли йода и ксенона и её упрощение.

 $\frac{dN_{I}}{dt} = \gamma_{I}\sigma_{f5}\Phi N_{5} - \lambda_{I}N_{I}. \qquad \frac{dN_{Xe}}{dt} = \lambda_{I}N_{I} + \gamma_{Xe}\sigma_{f5}N_{5}\Phi - \sigma_{Xe}N_{Xe}\Phi - \lambda_{Xe}N_{Xe}$ $\Phi = \Phi_{0} = const : \qquad \lambda_{I}N_{I} = \gamma_{I}\sigma_{f5}\Phi_{0}N_{5} = const \qquad N_{Xe} = \frac{(\gamma_{I} + \gamma_{Xe})\sigma_{f5}N_{5}\Phi_{0}}{\lambda_{Xe} + \sigma_{Xe}\Phi_{0}}$ Reactor poisoning - $P = \frac{N_{Xe}\sigma_{cXe}}{N_{5}\sigma_{a5}} \qquad \tau_{eff} = \frac{1}{\lambda_{Xe} + \sigma_{Xe}\Phi_{0}} \qquad - \text{effective living time of } \frac{135}{54}Xe$

For powerful reactors : $\Phi \sim 10^{14} \text{ cm}^{-2}\text{c}^{-1}$: $P \approx 5 \cdot 10^{-2} \rightarrow \rho = -0.05$

Overpoisoning after reactor shutdown: "lodine pit"

lodine pit is a non-stationary Xe poisoning of the reactor at the time of shutdown, due to the excess of the rate of iodine decay accumulated before the moment of shutdown, over the rate of xenon decay

Regardless of the power level for which the reactor worked before the shutdown, complete recovery of the reactor after the Xe poisoning occurs in 3 days after the reactor shutdown

Poisoning of the reactor with fission products

Dependence of the value of stationary Xe poisoning of the reactor on the average flux density of thermal neutrons in the active zone

Dependence of the iodine pit depth from the reactor power

Poisoning of the reactor with fission products Xenon poisoning is essential for thermal reactors, Insigible - for intermediate and

Not essential - for fast reactors!

Nuclear safety regulations require that after the thermal reactor is shutdown an excessive concentration of boric acid was created in the water of the first circuit, guaranteeing the impossibility of self-restarting of the reactor due to its recovery after Xe poisoning