

National Academy of Sciences of Ukraine National Science Center "Kharkiv Institute of Physics and Technology" V.N. Karazin Kharkiv National University

1

Lecture #1: Introduction in Nuclear Reactor Physics

Sergii P. Fomin

Leading researcher, PhD, Akhiezer Institute for Theoretical Physics National Science Center "Kharkiv Institute of Physics and Technology"

e-mail: spfomin@gmail.com

Kutaisi International University 01-03 November 2024 Kutaisi, Georgia

Outlook:

- Human Civilization & Power Consumption
- Fundamental differences between different types of "Energy sources"
- Basic principles of operation of a nuclear reactor
- Nuclear power in the world
- Main problems of nuclear power
- And ways to solve these problems
- Opened and closed nuclear fuel circles

Civilization & Power Consumption

First cave-fire ~ **500 000 years ago : "Chinese Prometheus" Metallurgy: Copper (5 ky BC) Bronze (3 ky BC) Iron (1 ky BC)**

³ **From the book: Ian Hore Lacy,"Nuclear Energy in the 21st Century", Elsevier Publ., 2006.**

Dynamics of the global consumption of energy resources

1EJ (ExaJ) = 1018J = 2.78·1011 kW·h

J. Mercure, "Energy", 46 (2012) 322.

- **X 6 !!**
- **X 40 !!**

4

2018 BP Energy Outlook © BP p.l.c. 2018

Global electricity production by types fuel 2016 (2023)

Different kinds of "Energy sources"

1) " Mechanical power " is the work by Gravitational field of the Earth

$$
F = \gamma \frac{m \cdot M}{r^2} \qquad \frac{E}{g}
$$

$$
E = g \cdot m \cdot h
$$

$$
g = \gamma M_3 / R_3^2
$$

To boil 1 liter of water ~ 0.1 kWh

~ 42 700 kg٠m - mechanical energy (assuming 100% transform. efficiency!)

2) " Chemical power " (carbon oxidation) has Electromagnetic nature Different kinds of "Energy sources"

$$
C + O_2 = CO_2
$$

 $\mathbf{F} = k \frac{\mathbf{q} \times \mathbf{Q}}{\mathbf{r}^2}$

7

 $E \sim 1$ eV/atom = $1.6 \cdot 10^{-19}$ J/atom

~ 10 g of gasoline ~ 40 t٠m mech. energy - **108 times !!!**

Nuclear chain reaction (**Leo Szilárd and Enrico Fermi - 1939**)

Source of nuclear energy is the mass defect

 $\Delta m = (Z \cdot m(p) + N \cdot m(n)) - M_n(Z, A) \qquad \Delta E = \Delta (m \cdot c^2) = c^2 \cdot \Delta m$

Specific binding energy in the nucleus *ε = ∆E/ A* (MeV/nucleon)

NEUTRON CROSS-SECTIONS FOR FISSION OF URANIUM AND PLUTONIUM

Nuclear Power (2019: Total = 450 reactor units)

Nuclear Power Today

4 Nuclear Power Plants (13 WWER-1000 and 2 WWER-440) Total Electric Power – 13,835 MWe.

Nuclear Power Problems

- **Safety !!! (after Chernobyl accident)**
- **Closed fuel cycle (fuel reproduction)**
- **Ecological problems (nuclear waste utilization)**
- **Nonproliferation of fissile materials (nuclear terrorism)**

Nuclear Power 2019

Explored Earth reserves of Uranium

¹⁷ **Nuclear plants are provided with Uranium-235 only until 2035!**

Burnup and Reproduction of Nuclear Fuel

Forecast of ensuring uranium production until 2050 with explored reserves

Production was provided with uranium reserves until 2035 (!)

Fast Reactors

Fast Reactors

Зависимость числа мгновенных нейтронов η на один акт поглощения от энергии падающих нейтронов

 $2 - - -$

Neutron balance

 $v_{fs} = 2.42$ – average number of fast fission neutrons

$$
I = \frac{v_{f5} \Sigma_{f5}}{\Sigma_{f5} + \Sigma_8} = \frac{v_{f5}}{1 + \alpha}
$$

$$
\alpha = \frac{\Sigma_8}{\Sigma_{f5}}
$$

 γ

 η – (1+*L*) \geq 1

$$
\eta \ge 2 + L \quad \Longrightarrow \quad \eta \ge 2
$$

BR = **η** – (1+*L*) - breeding ratio

Fast Reactors

The main advantages of fast neutron reactors:

- 1) the possibility of reproduction of nuclear fuel (breeding reactors) KR = 1.4
- **2) deep fuel burnout (economy)**
- **3) high temperatures of the coolant higher efficiency**
- **4) small size (transportability)**

Disadvantages of fast neutron reactors:

- **1) higher enrichment of nuclear fuel (4÷5 times)**
- **2) higher energy tension (4÷5 times)**
- **3) coolant problem (liquid metal: Na, NaK, Hg, Pb, Bi; gas: He)**

(TM = 98C, 20C)

4) construction materials

Forecast world demand for Uranium up to 2100

Opened and closed nuclear fuel circles

Thank you for attention ! $\mathcal{E}_{\mathcal{U}}$ Time for questions!

Poisoning of the reactor with fission products

Рис. 19.2. Схема образования и убыли йода и ксенона и её упрощение.

 $\frac{dN_I}{dt} = \gamma_I \sigma_{f5} \Phi N_5 - \lambda_I N_I.$ $\frac{d^{2}V_{I}}{dt} = \gamma_{I} \sigma_{f5} \Phi N_{5} - \lambda$ $\Phi = \Phi_0 = const$: $\lambda_I N_I = \gamma_I \sigma_{f5} \Phi_0 N_5 = const$ $5¹$ 5 *Xe* $\frac{dN_{Xe}}{dt} = \lambda_I N_I + \gamma_{Xe} \sigma_{f5} N_5 \Phi - \sigma_{Xe} N_{Xe} \Phi - \lambda_{Xe} N_{Xe}$ $\frac{dV_{Xe}}{dt} = \lambda_I N_I + \gamma_{Xe} \sigma_{f5} N_5 \Phi - \sigma_{Xe} N_{Xe} \Phi - \lambda$ $(\gamma_I + \gamma_{Xe}) \sigma_{fs} N_s \Phi_0$ $Xe \perp Y \vee Xe \perp 0$ *Xe* $N_{Xe} = \frac{(\gamma_I + \gamma_{Xe})\sigma_{fs}N}{2}$ $=\frac{(\gamma_I + \gamma_{Xe})\sigma_{fs}N_s\Phi}{\lambda_{Xe} + \sigma_{Xe}\Phi_0}$ 0 1 *eff* $Xe \perp V$ Xe $\tau_{eff} = \frac{1}{\lambda_{Xe} + \sigma_{Xe} \Phi_0}$ - effective living
time of 135 V_{c} time of $^{135}_{54}Xe$ $5 \cup a 5$ 54 *Xe c Xe a N P N* σ σ Reactor poisoning $-P =$

For powerful reactors : $\Phi \sim 10^{14}$ **cm⁻²c⁻¹:** $P \approx 5.10^{-2}$ → $\rho = -0.05$

Overpoisoning after reactor shutdown: "Iodine pit"

Iodine pit is a non-stationary Xe poisoning of the reactor at the time of shutdown, due to the excess of the rate of iodine decay accumulated before the moment of shutdown, over the rate of xenon decay

Regardless of the power level for which the reactor worked before the shutdown, complete recovery of the reactor after the Xe poisoning occurs in 3 days after the reactor shutdown

Poisoning of the reactor with fission products

Dependence of the value of stationary Xe poisoning of the reactor on the average flux density of thermal neutrons in the active zone

Dependence of the iodine pit depth from the reactor power

Xenon poisoning is essential for thermal reactors, Insigible - for intermediate and Not essential - for fast reactors! Poisoning of the reactor with fission products

Nuclear safety regulations require that after the thermal reactor is shutdown an excessive concentration of boric acid was created in the water of the first circuit, guaranteeing the impossibility of self-restarting of the reactor due to its recovery after Xe poisoning