

National Academy of Sciences of Ukraine National Science Center "Kharkiv Institute of Physics and Technology" V.N. Karazin Kharkiv National University

Lecture #3: Nuclear Burning Wave Phenomenon & Traveling Wave Reactor

Sergii P. Fomin

Leading researcher, PhD, Akhiezer Institute for Theoretical Physics National Science Center "Kharkiv Institute of Physics and Technology"

e-mail: spfomin@gmail.com

Kutaisi International University 01-03 November 2024

Kutaisi, Georgia

Outlook:

- Nuclear Burning Wave phenomenon
- Mathematical approach & calculation results
- Mixed Th-U-Pu fuel cycle
- Stability study of NBW regime
- Negative reactivity feedback & intrinsic safety
- Transient processes in NBW reactor
- Main features of NBW reactor & unsolved problems

"A New Nuclear Evangelist"

http://www.ted.com/talks/bill_gates.html

TerraPower + Toshiba + China + Korea Rep. = TWR (2020)

The Evolution of the Traveling-Wave Concept

Nuclear Burning Wave concept Lev Feoktistov (USSR, 1988):

 $\frac{\partial n}{\partial t}$

 ∂t

 τ_{β}

²³⁸U (n, γ) \rightarrow ²³⁹U (β) \rightarrow ²³⁹Np (β) \rightarrow ²³⁹Pu (n,fission) ...

 $T_{1/2} \approx 2.35$ days

L.P. Feoktistov. Preprint IAE-4605/4, 1988. L.P. Feoktistov, Sov. Phys. Dokladv. 34 (1989) 1071

$$\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial z^2} + vn \left(\sigma_{a8} N_8 - \left(\sigma_a + \sigma_f \right)_{P_u} N_{P_u} \right) \longrightarrow N_{cr}^{P_u} = \frac{\sum_i \sigma_{ai} N_i}{(v - 1)\sigma_f^{P_u}} \qquad x = z + Vt$$

$$\frac{\partial N_8}{\partial t} = -vn\sigma_{a8} N_8; \quad \frac{\partial N_9}{\partial t} = vn\sigma_{a8} N_8 - \frac{1}{\tau_{\beta}} N_9 \qquad N_{eq}^{P_u} = \frac{\sigma_{a8} N_8}{\sigma_f^{P_u} + \sigma_a^{P_u}} \longrightarrow \frac{N_{eq}^{P_u} > N_{eq}^{P_u}}{Feoktistov}$$

$$\frac{\partial N_{P_u}}{\partial t} = \frac{1}{\tau_e} N_9 - vn \left(\sigma_a + \sigma_f \right)_{P_u} N_{P_u} \qquad 4$$

1992 V.Goldin, D. Anistratov (Moscow Institute of Applied Mathemetics)

V. Goldin, D. Anistratov, Preprint IAM, # 43, 1992; Mathematical Modelling, 7 (1995) 12.

Dynamics of the FR nuclear composition

The numeration of the nuclei in the U-Pu transformation chain

N	1	2	3	4	5	6	7	8	9	10
Nucleus	²³⁸ U	²³⁹ U	²³⁹ Np	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu	²⁴³ Am	241 Am	FP

Edward Teller: Nuclear Energy for the Third Millennium Preprint UCRL-JC-129547, LLNL, **1997**. - <u>Th-U fuel cycle</u>

Edward Teller (LLNL, USA) 1997: Traveling Wave Reactor

E.Teller, 1997. Nuclear Energy for the Third Millennium. Preprint UCRL-JC-129547, LLNL.

2001 Hiroshi Sekimoto (TIT, Japan) : CANDLE

Constant Axial Shape of Neutron Flux, Nuclide Densities and Power Shape During Life of Energy Production

www.crines.titech.ac.jp/eng/

Hiroshi Sekimoto et al. (TIT, Japan) 2001-2016 :

Stationary problem (x = z + Vt), 2d cylindrical geometry (U-Pu fuel cycle)

H. Sekimoto et al. A New Burnup Strategy CANDLE. Nuclear Science & Engineering 139 (2001) 306.

H. Sekimoto, Light a CANDLE, 2005, p.30 : CANDLE burnup has not been achieved with thorium !?

Nuclear burning wave in FR

S. Fomin et al., Annals of Nuclear Energy, 32 (2005) 1435-1456.

2D Non-Stationary Theory of Nuclear Burning Wave

Non-Stationary Nonlinear Multi-Group Diffusion Equation of Neutron Transport $\frac{1}{v^g} \frac{\partial \Phi^g}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} r D^g \frac{\partial \Phi^g}{\partial r} - \frac{\partial}{\partial z} D^g \frac{\partial \Phi^g}{\partial z} + \left(\Sigma_a^g + \Sigma_{in}^g + \Sigma_{mod}^g - \Sigma_{in}^{g \to g} \right) \Phi^g - \Sigma_{mod}^{g-1} \Phi^{g-1} = \chi_f^g \sum_{g'=1}^G (\mathbf{v}_f \Sigma_f)^{g'} \Phi^{g'} - \sum_j \chi_d^j \sum_l \beta_l^j \sum_{g'=1}^G (\mathbf{v}_f \Sigma_f)^{g'} \Phi^{g'} + \sum_j \chi_d^j \sum_l \lambda_l^j C_l^j + \sum_{g'=1}^{g^{-1}} \Sigma_{in}^{g' \to g} \Phi^{g'}$

Together with Fuel Burn-up Equations and Equations of Nuclear Kinetics

$$\frac{\partial N_l}{\partial t} = -\left(\sum_g \sigma_{al}^g \Phi^g + \Lambda_l\right) N_l + \left(\sum_g \sigma_{c(l-1)}^g \Phi^g + \Lambda_{(l-1)}\right) N_{(l-1)} \quad , (l = 1 \div 8); \qquad \frac{\partial N_9}{\partial t} = \Lambda_6 N_6$$

of Precursor Nuclei of Delayed Neutrons

$$\frac{\partial C_l^j}{\partial t} = -\lambda_l^j C_l^j + \beta_l^j \sum_g (\mathbf{v}_f^g \Sigma_f^g)_l \Phi^g$$

$$\frac{\partial N_{10}}{\partial t} = \sum_{l=1,4,5,6,7} \left(\sum_{g} \sigma_{fl}^{g} \Phi^{g} \right) N_{l}$$

Metal fuel (44%) Pb-Bi coolant (36%) CM - Fe (20%) $j_{ext} \sim 10^{15} \text{ cm}^{-2} \text{ s}^{-1}$ 12 t_{off} = 400 days

Results for the 5m length and 110 cm radius cylindrical FR

(a) scalar neutron flux (×10¹⁶ cm⁻² s⁻¹); (b) power density (*kW* cm⁻³); (c) concentration of ²³⁹Pu (×10²¹ cm⁻³); (d) depth of fuel burn-up (%) for for $t_1 = 5$, $t_2 = 100$, $t_3 = 2000$, $t_4 = 4000$ and $t_5 = 5000$ days.

NBW Reactor : R=117 cm, L = 500 cm , t_{off} = 950 days

The 2D-distribution $N_{\rm U}(r,z)$ (×10²¹ cm⁻³) of the ²³⁸U isotope

in the NBW regime at different time moments

Fuel burn-up

Dependence of the NBW velocity V on the reactor radius R

S. Fomin et al., Global 2009 (Paris, France) paper 9456

2D Non-Stationary Theory of Nuclear Burning Wave: The reflector effects study

Reactor Power Control by Reflector Efficiency

S. Fomin et al., Annals of Nuclear Energy, 148 (2020) 107699.

The reflector effects study

S. Fomin et al., Annals of Nuclear Energy, 148 (2020) 107699.

Malovytsia M.S., PhD thesis, 30 June 2021, Kharkiv, Ukraine.

Dynamics of the FR nuclear composition

The numeration of the nuclei in the Th - U transformation chain

l	1	2	3	4	5	6	7	8	9	10
Nucleus	²³² Th	²³³ Th	²³³ Pa	²³³ U	²³⁴ U	²³⁵ U	²³⁶ U	²³⁷ U	²³⁷ Np	FP

$$\begin{aligned} \frac{\partial N_{1}}{\partial t} &= -\sigma_{a1} \Phi N_{1} \quad \frac{\partial N_{10}}{\partial t} = \sum_{l=1,3\neq7,9} \sigma_{fl} \Phi N_{l} \\ \frac{\partial N_{l}}{\partial t} &= -\left(\sigma_{al} \Phi + \Lambda_{l}\right) N_{l} + \left(\sigma_{c(l-1)} \Phi + \Lambda_{(l-1)}\right) N_{(l-1)}, \quad (l=2\neq9) \\ \sigma_{al} &= \sigma_{cl} + \sigma_{fl}, \qquad \Lambda_{l} = \ln 2/T_{1/2}^{l}, \qquad N_{l}(z,t=0) = N_{0l}(z) \end{aligned}$$

Equations of nuclear kinetics for the precursor nuclei of delayed neutrons (approximation of one equivalent group of delayed neutrons)

$$\frac{\partial C_l}{\partial t} = -\lambda_l C_l + \beta_l (v_f \Sigma_f)_l \Phi, \qquad C_l(z, t = 0) = C_{0l}(z).$$

 $l = 1, 3 \div 7, 9$ - the fissile nucleus number.

NBW reactor with mixed Th-U-Pu fuel

S. Fomin et al., ICAPP 2010 (San Diego, USA) paper 10302. S. Fomin et al. Progress in Nuclear Energy 52 (2011) 800-80

Example: Metallic fuel ²³²Th (62%) + ²³⁸U (48%) volume fraction = 55%, fuel porosity p = 0.35; Coolant (Pb-Bi eutectic) vol. frac. = 30%, Constr. materials (Fe) vol. frac. = 15%; R = 390 cm

Fuel burn-up for mixed Th-U-Pu cycle

Stability of the NBW Regime

Perturbation of integral neutron flux F_{int} (×10²² cm/s) caused by an external neutron source via time *t* (days). The source with intensity $Q_{ext} = 2 \times 10^{11}$ (cm⁻³ s⁻¹) starts at $t_0 = 3650$ days, lasts during 1 hour and is situated at 160 < *z* < 170 cm

Negative Reactivity Feedback

Evolution of the volume-averaged neutron flux F_{av} (×10¹⁵ cm⁻² c⁻¹) and concentrations N_{av} (×10¹⁷ cm⁻³) of the main fissile and intermediate nuclides in the fuel of mixed ThUPu cycle with time *t* (days) at the initial stage of the neutron flux perturbation t_0 = 3650 days. The averaged nuclide concentrations: N_{Np} is for ²³⁹Np, $N_{Pa} = N_{Pa} - 53.1 \cdot 10^{17}$ cm⁻³, is for ²³⁹Pu $N_{Pu}^2 = N_{Pu} - N_{Pu} j s_0 \text{ for } 2^{33}\text{U}$. , $M_U^2 = N_U - N_U |_{t_0-1}$

Negative Reactivity Feedback

Variation of the reactivity ρ (dollars) with time *t* (days) along the variation of the volume-averaged neutron flux F_{av} (×10¹⁵ cm⁻² c⁻¹)

Stability of the NBW Regime

Smooth Startup of the NBW Reactor

O. Fomin et al., *Journal of Kharkiv National University, #1041, physical series «Nuclei, Particles, Fields», 2 /58/* (2013) 49-56.

Smooth Startup of the NBW Reactor

Shutdown and Restart of the NBW Reactor

S. Fomin et al., IC Global 2015 (Paris, France) paper 5254.

Shutdown and Restart of the NBW Reactor

S. Fomin et al., IC Global 2015 (Paris, France) paper 5254.

Main features of NBW reactor with mixed Th-U-Pu fuel cycle

Reactor composition (vol. frac.):

Fuel = 55% (*F*_{Th} = 62%, *p* = 0.20), Coolant = 30%, CM = 15%, **R = 215 cm**

- negative feedback on reactivity intrinsic safety (!!!)
- long-term (decades!!) operation without refuelling and external control
- possibility of ²³²Th and ²³⁸U utilization as a fuel
- fuel burn-up depth for both ²³⁸U and ²³²Th ≈ 50% (one through cycle !)
- neutron flux in active zone ≈ 2·10¹⁵ n/cm²s
- neutron fluence during the whole reactor campaign $\approx 3.10^{24}$ n/cm²
- energy production density in active zone ≈ 200 W/cm³
- total power at the steady-state regime ≈ 1.2 GWt
- wave velocity at the steady-state regime ≈ 2 cm/year
- possibility of nuclear waste burn out (expected)

List of our publications on the NBW reactor :

- S. Fomin et al., Annals of Nuclear Energy, 32 (2005) 1435-1456.
- S. Fomin et al., Problems of Atomic Science & Technology, 6 (2005) 106-113.
- S. Fomin et al., ICENES (2005) (Brussels, Belgium) paper IC058.
- S. Fomin et al., *Nuclear Science & Safety in Europe*. Springer (2006) 239-251.
- S. Fomin et al., ICAPP'06 (2006) (Reno, USA) paper 6157.
- S. Fomin et al., Problems of Atomic Science & Technology, 3 (2007) 156–163.
- S. Fomin et al., ICAPP'07 (2007) (Nice, France) paper 7499.
- S. Fomin, Reactor Physics and Technology. PINP WS, St-Perersburg, XL-XLI (2007) 154-198.
- S. Fomin et al., Progress in Nuclear Energy, 50 (2008) 163-169.

Yu.Mel'nik et al., Atomic Energy, 107 (2009) 288-295.

- S. Fomin et al., Global 2009 (Paris, France) paper 9456.
- S. Fomin et al., *ICAPP* 2010 (San Diego, USA) paper 10302.
- S. Fomin et al., Progress in Nuclear Energy, 52 (2011) 800-805.
- O. Fomin et al., Journal of KNU, #104, «Nuclei, Particles, Fields», issue 2/58/ (2013) 49-56.
- S. Fomin et al., IC "Fast Reactors 2013" (Paris, France) paper CN-199-457.
- S. Fomin et al., IC "Global 2015" (Paris, France) paper 5254.
- S. Fomin et al., Problems of Atomic Science & Technology, 3 /121/ (2019) 80–85
- S. Fomin et al., Annals of Nuclear Energy, 148 (2020) 107699

The Third International Symposium on Innovative Nuclear Energy Systems

INES-3

. . .

- Innovative Nuclear Technologies for Low-Carbon Society -

31st October — 3rd November, 2010 Tokyo Institute of Technology, Tokyo, Japan

1A-1-2: Sustainable Burning Reactors - Chairs: Kevan Weaver (TerraPower, USA) Traveling-Wave Reactors: Challenges and Opportunities - Kevan Weaver et al. (TerraPower, USA) Feasibility of LBE Cooled Breed and Burn Reactors - Ehud Greenspan (UC, Berkeley, USA) Preliminary Engineering Design of Sodium-Cooled <u>CANDLE</u> Core - Hiroshi Sekimoto (TIT, Japan) Nuclear Burning Wave in Fast Reactor with Mixed Th-U Fuel - Sergii Fomin et al (NSC KIPT, Ukraine) Nuclear Traveling Wave in a Supercritical Water Cooled Fast Reactor – W. Maschek (KIT, Germany) Development and Prospects of <u>TWR</u> Project in China - Zheng Mingguang (Shanghai NER&DI, China) Special Presentation: <u>Traveling-Wave Reactors</u> - John Gilliland. (Director of TerraPower, USA)

1A-3: Thorium Fuel Reactors - Chair: Sergii Fomin (NSC KIPT, Ukraine) (Th-U-Pu) - Mixed Fuel Cycle and Proliferation– E. Kryuchkov et al, (MEPhI, Russia) Large Scale Utilization of Thorium in Gas Cooled Reactors - V. Jagannathan (Bhabha ARC, India)

Program: HORIZON-EURATOM-2023-NRT-01-03

Proposal acronym: "TREASURE" (4 MEuro for 4 years)

Subject: Development of the European Generation IV Gas-cooled Fast Reactor (demonstrator) "ALLEGRO"

List of participating organisations from 8 countries:

- 1 VUJE AS SK (Coordinator)
- 2 UJV REZ AS CZ
- 3 ENERGIATUDOMANYI KUTATOKOZPONT HU
- 4 NARODOWE CENTRUM BADAN JADROWYCH PL
- 5 COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES **FR**
- 6 CENTRUM VYZKUMU REZ SRO CZ
- 7 KARLSRUHER INSTITUT FUER TECHNOLOGIE DE
- 8 FRAMATOME FR Partner
- 9 CESKE VYSOKE UCENI TECHNICKE V PRAZE CZ

10 EVALION SRO CZ

11 NSC "KHARKOV INSTITUTE OF PHYSICS AND TECHNOLOGY **UA** 12 BUDAPESTI MUSZAKI ES GAZDASAGTUDOMANYI EGYETE **HU** 13 SLOVENSKA TECHNICKA UNIVERZITA V BRATISLAVE **SK**

- 14 ZAPADOCESKA UNIVERZITA V PLZNI CZ
- 15 STATE OFFICE FOR NUCLEAR SAFETY CZ
- 16 HELMHOLTZ-ZENTRUM DRESDEN-ROSSENDORF EV DE
- 17 THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIV UK
- 18 THE UNIVERSITY OF SHEFFIELD **UK**

Kharkiv team:

Sergii Fomin - PI

Maksym Malovytsia

Yurii Melnik

Vladimir Pilipenko

Nikolai Shul'ga

Thank you for attention !

37 **37**

Traveling Wave Reactor Physics

- A breed-and-burn reactor:
 - 1. First breed fissile Pu-239 in U-238 fuel, using leakage flux from burning region
 - 2. Newly created fuel can directly replace discharged fuel in burning region and sustain criticality
 - Schematic illustration of a two-zone TWR:

Dose dependence of swelling of three ferritic-martensitic steels

Denuded zone effect in very narrow grains depresses the overall swelling somewhat. (ODS - Oxide dispersion-strengthened)